Ambarzumian-type Problems for Discrete Schrödinger Operators

نویسندگان

چکیده

Abstract We discuss the problem of unique determination finite free discrete Schrödinger operator from its spectrum, also known as Ambarzumian problem, with various boundary conditions, namely any real constant condition at zero and Floquet conditions angle. Then we prove following Ambarzumian-type mixed inverse spectral problem: diagonal entries except first second ones a set two consecutive eigenvalues uniquely determine operator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Internal Lifshitz tails for discrete Schrödinger operators

We consider random Schrödinger operatorsHω acting on l2(Zd). We adapt the technique of the periodic approximations used in (2003) for the present model to prove that the integrated density of states of Hω has a Lifshitz behavior at the edges of internal spectral gaps if and only if the integrated density of states of a well-chosen periodic operator is nondegenerate at the same edges. A possible...

متن کامل

Eigenvalue Problems for One-Dimensional Discrete Schrödinger Operators with Symmetric Boundary Conditions

In this paper, we investigate the one-dimensional discrete Schrödinger equation with general, symmetric boundary conditions. Our results primarily concern the number of energy states lying in the wells.

متن کامل

Schrödinger Operators with Local Interactions on a Discrete Set

Spectral properties of 1-D Schrödinger operators HX,α := − d 2 dx2 + ∑ xn∈X αnδ(x − xn) with local point interactions on a discrete set X = {xn}n=1 are well studied when d∗ := infn,k∈N |xn − xk| > 0. Our paper is devoted to the case d∗ = 0. We consider HX,α in the framework of extension theory of symmetric operators by applying the technique of boundary triplets and the corresponding Weyl funct...

متن کامل

Direct Approximation Theorems for Discrete Type Operators

In the present paper we prove direct approximation theorems for discrete type operators (Lnf)(x) = ∞ ∑ k=0 un,k(x)λn,k(f), f ∈ C[0,∞), x ∈ [0,∞) using a modified K−functional. As applications we give direct theorems for Baskakov type operators, Szász-Mirakjan type operators and Lupaş operator.

متن کامل

Convergence of Schrödinger Operators

For a large class, containing the Kato class, of real-valued Radon measures m on R the operators −∆ + ε∆ + m in L(R, dx) tend to the operator −∆ +m in the norm resolvent sense, as ε tends to zero. If d ≤ 3 and a sequence (μn) of finite real-valued Radon measures on R converges to the finite real-valued Radon measure m weakly and, in addition, supn∈N μ ± n (R) < ∞, then the operators −∆ + ε∆ + μ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Analysis and Operator Theory

سال: 2021

ISSN: ['1661-8254', '1661-8262']

DOI: https://doi.org/10.1007/s11785-021-01169-5